Question Number	Answer	Mark
$\mathbf{1}$ (a)	A statement which implies only certain energies are allowed e.g. Allowed/ possible energy of atom/ electron (in an atom) Discrete energy of an atom/ electron One of the energies of the atom/ electron Energy an atom/ electron can have	$\mathbf{1}$
(b)	Photon is a (discrete) package/packet/quantum of (electromagnetic) energy/ particle of light	$\mathbf{1}$

(c)	(energy of) E_{2} - (energy of) E_{1}	1
(d)	See $\mathrm{E}=\mathrm{hc} / \boldsymbol{\lambda}$ OR use of $\mathrm{v}=\mathrm{f} \lambda$ Substitution into $E=h c / \lambda$ OR use of $E=h f$ $\mathrm{E}=3.14 \times 10^{-19} \mathrm{~J}$ or 1.96 eV Example of answer $\begin{aligned} & E=\left(6.63 \times 10^{-34} \mathrm{Js} \times 3 \times 10^{8}\right) \div 6.33 \times 10^{-7} \mathrm{~m} \\ & E=3.14 \times 10^{-19} \mathrm{~J} \end{aligned}$	1 1 1
	Total for question	6

Question Number	Answer	Mark	
2 (a)(i)	Laminar alone to handlebar (at least from front wheel and 4 lines) and some turbulant behind (laminar: continuous lines, not crossing, not bending sharply, no eddies)	(1)	
A region of laminar and turbulent correctly labelled for candidates drawing			

Question Number	Answer		Mark
3(a)	Wind exerts a force/push(on the blades) blades move (through a distance in the direction of the force) Or Energy is transferred From kinetic energy of wind to (KE of) the blades	(1) (1) (1) (1)	2
3(b)(i)	Use of volume = area x length Volume $=270000\left(\mathrm{~m}^{3}\right)$ Example of calculation Volume per second $=6000 \mathrm{~m}^{2} \times 9 \mathrm{~m}=54000 \mathrm{~m}^{3}$ Total volume in 5 seconds $=54000 \mathrm{~m}^{3} \times 5 \mathrm{~s}=270000\left(\mathrm{~m}^{3}\right)$	(1) (1)	2
3(b)(ii)	Use of mass = density x volume Mass $=324000 \mathrm{~kg}$ (ecf) Example of calculation $\text { Mass }=1.2 \mathrm{~kg} \mathrm{~m}^{-3} \times 270000 \mathrm{~m}^{3}=324000 \mathrm{~kg}$	(1) (1)	2
3(b)(iii)	$\begin{aligned} & \text { Use of } \mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv} \\ & \mathrm{E}_{\mathrm{k}}=1.3 \times 10^{7} \mathrm{~J}(\mathrm{ecf}) \end{aligned}$ Example of calculation $\mathrm{E}_{\mathrm{k}}=1 / 2 \times 324000 \mathrm{~kg} \times\left(9 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=13122000 \mathrm{~J}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
3(b)(iv)	Use of either Energy from wind over 5 second period $=59 \% \times \mathrm{E}_{\mathrm{k}}$ Or KE divided by 5(s) Power $=1.5$ MW [Range of correct answers 1.5 MW to 1.8MW] Example of calculation Energy from the wind in 5 seconds $=0.59 \times 13100000 \mathrm{~J}=7741980 \mathrm{~J}$ Power $=$ energy/second $=7741980 \mathrm{~J} / 5 \mathrm{~s}=1.548 \mathrm{MW}$	(1) (1)	2
3(c)	Would need to stop wind entirely/Wind or air still moving/Wind or air still has KE/Not all the air hits the blades	(1)	1
3(d)	Max 2 - Wind doesn't always blow/if there is no wind they don't work/ wind speeds are variable/ need minimum amount of wind to generate the electricity/need a large amount of wind/can't be used in very high winds - Only 59 \% max efficiency - Low power output/Need a lot of turbines/ Need a lot of space	(1) (1) (1)	2
	Total for question		13

Question Number	Answer	Mark
4 (a)	Show that the work done by the horse in turning the wheel once was about 20000 J . Use of distance $=2 \pi r$ (1) Use of work = force x distance (1) Correct answer (19 000 (J) to at least 2 sf) (1) [no ue] (If force x 3.7 m used, allow second mark only) (If force x distance for 144 turns used, allow $1^{\text {st }}$ and $2^{\text {nd }}$ marks) Example of calculation $\begin{aligned} & x=2 \mathrm{x} \pi \times 3.7 \mathrm{~m}=23.2 \mathrm{~m} \\ & W=F \Delta x \\ & =800 \mathrm{~N} \times 23.2 \mathrm{~m} \\ & =18600 \mathrm{~J} \end{aligned}$ ('Reverse show that' starting from 20 000J - max 2)	(3)
4 (b)	Calculate the average power of the horse Recall power is rate at which work is done (accept formula or substituted values) (1) Substitute for 144 turns (1) Correct answer (740 W) (1) If using $\mathrm{P}=\mathrm{Fv}$: Recall $\mathrm{P}=\mathrm{Fv}$ (1) Use of $v=s / t$ for 144 turns (1) Correct answer (1) Example of calculation Power = work done / time $=144 \times 18600 \mathrm{~J} / 60 \times 60 \mathrm{~s}$ $=744 \mathrm{~W}$ (accept any dimensionally correct unit - ignore later units if W used as well) (use of 20000 J gives 800 W)	(3)
	Total for question	6

Question Number	Answer	Mark
$\mathbf{5}$ a	Describe how you could measure g QWC - Work must be clear and organised in a logical manner using technical wording where appropriate Max 6 marks state sufficient quantities to be measured (e.g. s and t OR v, u and t OR u, v and s)) (1) relevant apparatus (includes ruler and timer/ data logger/ light gates) (1) describe how a distance is measured (1) describe how a speed or time is measured (1) further detail of measurement of speed or time (1) vary for described quantities and plot appropriate graph (1) state how result calculated (1) repeat and mean (one mark max for any relevant quantity/ result) (1) Precaution - a precaution relating to experimental procedure (1)	$\mathbf{M a x ~ 6}$
$\mathbf{5 b}$	$\mathbf{1}$	
	Total for question	$\mathbf{7}$

