Question	Answer	Mark
Number		
1 (a)	A statement which implies only certain energies are allowed e.g.	
	Allowed/possible energy of atom/electron (in an atom)	
	Discrete energy of an atom/electron	
	One of the energies of the atom/electron	1
	Energy an atom/electron can have	
(b)	Photon is a (discrete) package/packet/quantum of (electromagnetic) energy/particle of light	1
(c)	(energy of) E_2 - (energy of)E $_1$	1
(d)	See $E = h c / \lambda$ OR use of $v = f \lambda$	1
	Substitution into $E = h c / \lambda$ OR use of $E = hf$	1
	$E = 3.14 \times 10^{-19} \text{ J}$ or 1.96 eV	1
	Example of answer	
	$E = (6.63 \times 10^{-34} \text{ Js} \times 3 \times 10^{-8}) \div 6.33 \times 10^{-7} \text{ m}$	
	$E = 3.14 \times 10^{-19} \text{ J}$	
	Total for question	6

Question Number	Answer		Mark
2 (a)(i)	Laminar alone to handlebar (at least from front wheel and 4 lines) and some turbulant behind (laminar: continuous lines, not crossing, not bending sharply, no eddies)	(1)	
	A region of laminar and turbulent correctly labelled for candidates drawing	(1)	2
	Lead cyclist tyrbyleut laminar		
2 (a)(ii)	Velocity of the lead cyclist relative to the air is greater (than that of the 2^{nd}		
	cyclist) Or air flow around the bicycle is greater for lead cyclist		
	Or lead cyclist has increased the speed of the air	(1)	
	More (air) resistance/drag on lead cyclist	(1)	2
	(Allow opposite for 2nd cyclist)		
2(b)	$4 \times$ force required (allow air resistance, drag, cyclist's force, friction etc)	(1)	
	See or used $P = Fd/t$ Or $P \propto v$ Or $P = Fv$	(1)	
	Power = $8P$	(1)	3
	Example of calculation Power = (force × distance) /time $P = (kv^2 × d)/t$ New power $P_{\text{faster}} = (k(2v)^2 × 2d)/t$ $P_{\text{faster}} = 8 (kv^2 × d)/t = 8P$		
2(c)(i)	30 (°C) as the drag is lower Or 30 (°C) because cyclist can travel faster for the same drag (accept high/largest instead of 30 (°C))	(1)	1
2(c)(ii)	Use of work done = force × distance Difference in work done at these temperature = 8800 J (accept Nm) (accept 9000 J as 4 km is to 1 sf)	(1) (1)	2
	$\frac{\text{Example of calculation}}{\text{Difference in work done} = (66.4 \text{ N} - 64.2 \text{ N}) \times 4\ 000 \text{ m}}$ $\text{Difference in work done} = 265600 - 256800 = 8800 \text{ J}$		
	Total for question		10

Question	Answer		Mark
Number			
3 (a)	Wind exerts a force/push(on the blades)	(1)	
	blades move (through a distance in the direction of the force)	(1)	
	Or		
	Energy is transferred	(1)	
	From kinetic energy of wind to (KE of) the blades	(1)	2
3(b)(i)	Use of volume = area x length	(1)	
	Volume = $270\ 000\ (m^3)$	(1)	2
	Example of calculation		
	Volume per second = $6\ 000\ \text{m}^2 \times 9\ \text{m} = 54\ 000\ \text{m}^3$		
- (1 (1))	Total volume in 5 seconds = 54 000 $\text{m}^3 \times 5 \text{ s} = 270 000 (\text{m}^3)$		
3 (b(ii)	Use of mass = density x volume	(1)	
	$Mass = 324\ 000\ kg\ (ecf)$	(1)	2
	Example of calculation		
2 (h)(iii)	$\frac{1}{Mass} = 1.2 \text{ kg m}^{-3} \times 270 \ 000 \text{ m}^{3} = 324 \ 000 \text{ kg}$	(1)	
3(b)(iii)	Use of $E_k = 1/2 mv^2$ $E_k = 1.3 \times 10^7 \text{ J (ecf)}$	(1)	2
	$E_k = 1.5 \times 10^{\circ} J (ecl)$	(1)	Z
	Example of calculation		
	$\frac{12 \times 110^{10} \text{ of calculation}}{\text{E}_{\text{k}} = \frac{1}{2} \times 324\ 000\ \text{kg} \times (9\ \text{m s}^{-1})^2 = 13\ 122\ 000\ \text{J}$		
3(b)(iv)	Use of either		
- (-)()	Energy from wind over 5 second period = 59 % x E_k		
	Or		
	KE divided by 5(s)	(1)	
	Power = 1.5 MW	(1)	2
	[Range of correct answers 1.5 MW to 1.8MW]		
	Example of calculation		
	Energy from the wind in 5 seconds = $0.59 \times 13\ 100\ 000\ J = 7\ 741\ 980\ J$		
2(0)	Power = energy/second = $7741980 \text{ J/5 s} = 1.548 \text{ MW}$		
3 (c)	Would need to stop wind entirely/Wind or air still moving/Wind or air still has KE/Not all the air hits the blades	(1)	1
2 (d)	Max 2	(1)	1
3 (d)	Max 2		
	• Wind doesn't always blow/if there is no wind they don't work/ wind speeds		
	• Wind doesn't always blow/if there is no wind they don't work/ wind speeds are variable/ need minimum amount of wind to generate the electricity/need		
	a large amount of wind/can't be used in very high winds	(1)	
	 Only 59 % max efficiency 	(1)	
		(1)	2
	Low power output/Need a lot of turbines/ Need a lot of space Total for question	(1)	13
			13

Question Number	Answer	Mark
4 (a)	Show that the work done by the horse in turning the wheel once was about 20 000 J. Use of distance = $2 \pi r$ (1)	
	Use of work = force x distance (1) Correct answer (19 000 (J) to at least 2 sf) (1) [no ue] (If force x 3.7 m used, allow second mark only) (If force x distance for 144 turns used, allow 1 st and 2 nd marks)	(3)
	Example of calculation $x = 2 \times \pi \times 3.7 \text{ m} = 23.2 \text{ m}$ $W = F\Delta x$ =800 N x 23.2 m	
	= 18 600 J ('Reverse show that' starting from 20 000J – max 2)	
4 (b)	Calculate the average power of the horse Recall power is rate at which work is done (accept formula or substituted values) (1) Substitute for 144 turns (1) Correct answer (740 W) (1) If using $P = Fv$: Recall $P = Fv$ (1) Use of $v = s/t$ for 144 turns (1) Correct answer (1)	(3)
	Example of calculation Power = work done / time = 144 x 18 600 J / 60 x 60 s = 744 W (accept any dimensionally correct unit – ignore later units if W used as well) (use of 20 000 J gives 800 W)	
	Total for question	6

Question Number	Answer	Mark
Question Number 5 a	Answer Describe how you could measure g QWC - Work must be clear and organised in a logical manner using technical wording where appropriate Max 6 marks state sufficient quantities to be measured (e.g. <i>s</i> and <i>t</i> OR <i>v</i> , <i>u</i> and t OR <i>u</i> , <i>v</i> and <i>s</i>)) (1) relevant apparatus (includes ruler and timer/data logger/ light gates) (1) describe how a distance is measured (1) describe how a speed or time is measured (1) further detail of measurement of speed or time (1) vary for described quantities and plot appropriate graph (1)	Mark
5b	state how result calculated (1) repeat and mean (one mark max for any relevant quantity/result) (1) Precaution - a precaution relating to experimental procedure (1)	Max 6 1
	Total for question	7